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Abstract—A neural network formulation for modeling non-
linear microwave circuits is achieved in the most desirable
format, i.e., continuous time-domain dynamic system format.
The proposed dynamic neural network (DNN) model can be
developed directly from input–output data without having to
rely on internal details of the circuit. An algorithm is developed
to train the model with time or frequency domain information.
Efficient representations of the model are proposed for convenient
incorporation of the DNN into high-level circuit simulation.
Compared to existing neural-based methods, the DNN retains or
enhances the neural modeling speed and accuracy capabilities,
and provides additional flexibility in handling diverse needs of
nonlinear microwave simulation, e.g., time- and frequency-domain
applications, single-tone and multitone simulations. Examples of
dynamic modeling of amplifiers, mixer, and their use in system
simulation are presented.

Index Terms—Modeling, neural networks, nonlinear circuits,
optimization, simulation.

I. INTRODUCTION

A RTIFICIAL neural networks (ANNs) have recently been
recognized as a useful tool for modeling and design opti-

mization problems in RF and microwave computer-aided design
(CAD) [1]–[3]. They have been successfully used in a variety of
applications such as modeling and optimization of high-speed
very large scale integration (VLSI) interconnects [4], coplanar
waveguide (CPW)circuits [5], spiral inductors [6],EMoptimiza-
tion [7], global modeling [8], yield optimization [9], and circuit
synthesis [10], [11]. Knowledge-based approaches combining
microwave empirical or equivalent circuit models together with
neural network learning have also been studied [7], [12], [13] to
further improve the training efficiency and model reliability.

This paper addresses an important application of ANNs,
i.e., application to nonlinear circuit modeling and design. This
could be a significant area because of the increasing need for
efficient CAD algorithms in high-level and large-scale nonlinear
microwave design. The brute-force way is to use original de-
tailed circuit representation for system level simulation, leading
to accurate but extremely slow computation. Conventional
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approaches addressing this issue are, e.g., behavioral modeling
[14], [15], equivalent circuit [16], and model reduction [17]
techniques, among which the behavioral modeling approach is
presently the major method for system simulation in industrial
applications. Recently, several ANN-based methods have been
proposed for nonlinear modeling [8], [9], [18]–[23]. These
works demonstrated neural networks as a useful alternative to the
conventional approaches. The ANN approach has the potential
to learn the nonlinear behavior from measured or simulated
input–output data, avoiding otherwise manual effort of devel-
oping equivalent circuit topology. Similarly, ANN also avoids
the need of availability of original circuit equations as required
in model reduction techniques. The universal approximation
property of ANN provides a theoretical basis of representing
the full analog solutions of the circuit, overcoming the accuracy
limitations in conventional behavioral models. The evaluation
of the ANN from input to output is very fast [24].

Among the existing nonlinear neural modeling approaches,
most of the earlier methods are developed under FET mod-
eling motivations [8], [9], [18], [19]. The hybrid circuit/neural
network approach in [8], [18] assumes the existence of a good
equivalent circuit of the transistor and uses neural network to
provideequivalent circuit parameters.TheVolterra-kernel-based
approach [19] is formulated with first-order Volterra kernel,
which are represented by the ANN. The- (current-charge)
neural model approach [9] uses an ANN to provide FET intrinsic
current and charges from intrinsic terminal voltages and phys-
ical/geometrical parameters. These are some of the pioneering
steps in ANN-based nonlinear modeling. However, they are not
sufficient to address the difficulties in circuit level modeling
such as amplifiers and mixers. For example, the hybrid method
is limited by the availability and quality of the equivalent circuit
models; the first-order Volterra kernal assumption in [19] which
was sufficient under FET device senarios may not be suitable
for nonlinear circuits. The – model in [9] can represent
high nonlinearities and is suitable for harmonic balance (HB)
simulation. However, its use of static neural networks makes
it suitable only for FET intrinsic modeling and not suitable for
modeling higher order dynamic effects in large nonlinear circuits
with many internal nodes.

Recently, several ANN methods were introduced with
emphasis on nonlinear circuit modeling, such as neural-net-
work-based behavioral model [20], [21], which uses harmonic
information of the nonlinear circuit behavior, and discrete recur-
rentneuralnetwork[22],[23]approaches,whichusetime-delayed
signals to help producing the model input–output relationship.
The neural network method in [21] is formulated to overcome
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the limitations in conventional behavioral models by providing
bidirectional behavior allowing more accurate system simula-
tion. Recurrent neural network approach [22] achieves a discrete
time-domain model based on backpropagation-through-time
training to learn the circuit input–output relationship. These
works represent important recent milestons in the direction of
ANN-based nonlinear modeling. However, because of the spe-
cific formatsof theseexistingmethods, therestillexist limitations
due to difficulties in their incorporations in standard nonlinear
simulators, in establishing relations with large-signal measure-
ment, limited flexibility for different simulations, or potential
curse of dimensionality in multitone simulations.

The most ideal format to describe nonlinear dynamic
models for the purpose of circuit simulation is the continuous
time-domain format, e.g., the popularly accepted dynamic
current-charge format in many harmonic balance simulators.
This format, in theory, best describes the fundamental essence
of nonlinear behavior, and, in practice, is most flexible to fit
most or nearly all needs of nonlinear microwave simulation, a
task not yet achieved by the existing ANN-based techniques.
In the neural network community, such types of networks have
been studied, e.g., Hopefield network [25], recurrent network
[26], etc. However, they were mainly oriented for digital signal
processing such as binary-based image processing [26], or
system control with online correction signals from a physical
system [27]. They are not directly suitable for microwave
modeling. We must address continuous analog signals and our
CAD method must be able to predict circuit behavior offline.

For the first time, an exactly continuous time-domain dy-
namic-modeling method is formulated using neural networks
for large-signal modeling of nonlinear microwave circuits
and systems in this paper. The model, called dynamic neural
network (DNN) model, can be developed directly from
input–output data without having to rely on internal details of
the circuits. An algorithm is described to train the model with
time- or frequency-domain information. Efficient represen-
tations of the DNN are proposed such that the model can be
conveniently incorporated into circuit simulators for high-level
and large-scale nonlinear microwave design. The model can
be standardized even with diverse requirements of nonlinear
modeling such as single-tone and multitone applications, and
training with time- or frequency-domain data.

This paper is organized as follows. In Section II, we for-
mulate the new dynamic neural network modeling technique
and propose a training method for training the DNN. Two ap-
proaches of incorporating the DNN models into circuit simula-
tors are proposed, one through a circuit representation and an-
other through an efficient harmonic-balance-based representa-
tion. In Section III, examples of dynamic modeling of ampli-
fiers, mixer, and their use in system simulation are presented.
Accuracy and speed of using the DNN versus using conven-
tional approaches are compared.

II. DNN M ODELING OFNONLINEAR CIRCUITS: FORMULATION

AND DEVELOPMENT

A. Original Circuit Dynamics

Let and be vectors
of the input and the output signals of the nonlinear circuit, re-

spectively, where and are the number of inputs and out-
puts. The original nonlinear circuit can be generally described
in state equation form as

(1)

where is an vector of state variables and is the number
of states, and represent nonlinear functions. In a modi-
fied nodal formulation [28], the state vector includes nodal
voltages, currents of inductors, currents of voltage sources, and
charge of nonlinear capacitors.

For a circuit with many components, (1) could be a large set
of nonlinear differential equations. For system-level simulation
including many circuits, such detailed state equations are too
large, computationally expensive, and sometimes even unavail-
able at system level. Therefore, a simpler (reduced order) model
approximating the same dynamic input–output relationships is
needed.

B. Formulation of DNN Model

Let be the order of the reduced model, . Let
and denote the

th-order derivatives of and with respect to , respec-
tively. In order to derive a dynamic model, the original problem
(1) is reformulated into reduced order differential equations
using the input–output variables as

(2)

where represents nonlinear functions. In this paper, we pro-
pose to employ an ANN to represent the nonlinear relationships
between the dynamic information of inputs and outputs. Let
be a vector, . Let represent a multilayer
perceptron neural network [1] with input neurons representing
, , their derivatives , , and ,

; and the output neuron representing .
The proposed DNN model is derived from (2) as

...

(3)

and the inputs and outputs of the model are and
, respectively.

The overall DNN model (3) is in a standardized format for
typical nonlinear circuit simulators. For example, the left-hand
side of the equation provides the charge () or the capacitor
part, and the right-hand side provides the current () part, which
are the standard representation of nonlinear components in
many harmonic balance (HB) simulators. The proposed DNN
overcomes the limitations of the previous static– neural
model of [9] which was only suitable for intrinsic FETs. The
proposed DNN can provide dynamic current-charge parameters
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for general nonlinear circuits with any number of internal
nodes in original circuit. The order (or the number of hidden
neurons in ) represents the effective order (or the degree
of nonlinearity) of the original circuit that is visible from the
input–output data. Therefore, the size of the DNN reflects the
internal property of the original circuit rather than external
signals and, as such, the model does not suffer from the curse
of dimensionality in multitone simulation.

C. Model Training

Our DNN model will represent a nonlinear microwave circuit
only after we train it with data from the original circuit. We use
training data in the form of input/output harmonic spectrums,
which can be obtained through simulation or measurements. Let

and besuch inputandoutputspectrums, respectively,
, where is the set of spectrum frequencies. The training

data are generated using a variety of input samples, leading to
a set of data and , where is the sample index,

, and is the total number of samples.
A second set of data, called testing data should also be ob-

tained similarly from the original circuit for model verification.
The testing data should be generated using a set of input sam-
ples different from those used in training data.

Initial Training: We first train the part of the DNN
model in the time domain directly or indirectly using time-do-
main information. Suppose matrix represents the coef-
ficients of Inverse Fourier Transform [29]. Let the derivative of

w.r.t time be represented as

(4)

The training data for can be derived from

(5)

(6)

The initial training is illustrated in Fig. 1. The objective of
the training is to adjust ANN internal parameters to minimize
the error function, as shown by (7), at the bottom of this page,
where is the set of time points used by Fourier Transform [29].

This process is computationally efficient (without involving
harmonic balance simulation) and can train the from a
random (unknown) start to an approximate solution. Because
all input–output information in each sample of training data is at
the same instance of time, this proposed technique is completely
free from restrictions on sampling frequencies, representing a
clear advantage over the previous discrete recurrent neural net-
work method [22].

Final Training: The DNN model is further refined using re-
sults from initial training as a starting point. Final training is

Fig. 1. Initial training: to train thefff part in time-domain using spectrum
data, whereAAA is the time-derivative operator corresponding to (4).

done in the frequency domain involving HB solutions of the DNN
model. The error function for training is

(8)

where and represent spectrum from model and
th sample of training data, respectively. In order to achieve

the harmonic solutions from the DNN model, we apply
differentiation over the using the adjoint neural network
method [30]. The resulting derivatives fit the Jacobian matrix of
harmonic balance equations.

The training technique presented here demonstrates that both
time- and frequency-domain data can be used for DNN training.
The compatibility of DNN training with large-signal harmonic
data is an important advantage over the discrete recurrent neural
network approach [22] whose training is limited to time-domain
only.

D. Use of the Trained DNN Model in Circuit Simulation

1) Method 1—Circuit Representation of DNN:An exact cir-
cuit representation of our DNN model can be derived as shown
in Fig. 2(a). The state variables are represented by voltages on
unit capacitors with their currents controlled by other state vari-
ables, e.g., , where . The dynamic
model inputs are defined as voltages on unit inductors with their
currents controlled by input dynamics of different orders, e.g.,

, where . In this way, the trained model
can be conveniently incorporated into available simulation tools
for high-level circuit and system design. This can be achieved in
most existing simulators without doing computer programming.

(7)
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(a)

(b)

Fig. 2. Representations of DNN for incorporation into high-level simulation.
(a) Circuit representation of the DNN model. (b) HB representation of the DNN
model. The two representations are different only in implementation and they
are numerically equivalent to each other.

2) Efficient HB Representation of DNN:Here we propose
another method for incorporating the DNN model into circuit
simulation. We use HB as the circuit simulation environment.
Through the formulation described below, we are able to elimi-
nate most of the state variables in DNN by Fourier Transform
and use even fewer variables during HB simulation, further
speeding up circuit simulation. The HB representation is shown
in Fig. 2(b).

Let and be the Fourier Transform of input
and output , respectively. Let represent the Fourier
Transform matrix, such that

(9)

(10)

Fig. 3. Amplifier circuit to be represented by a DNN model.

Since

(11)

(12)

premultiplying to the equation in DNN model of
(3), we have the HB equation for the DNN as (13), shown at the
bottom of this page, where is the Fourier Transform of the
time-domain signal as defined earlier.

Substituting (11) and (12) into the equation of the DNN
in (3), we have an input–output waveform equation, as shown
by (14) at the bottom of the following page.

Let , be vectors containing and for all the time
samples , . Let and be vectors containing
and at all the spectrum components, . Since

, and contain Fourier base functions
and their time derivatives, they are independent of any signals in
the circuit and are constants during HB simulation. Therefore,
the HB equations for DNN in (13) can be expressed as

(15)

where means “ nonlinear functions of ”. Equation (14) can
be expressed as

(16)

where also means “ nonlinear functions of ”.

(13)
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Fig. 4. Amplifier output: spectrum comparison between DNN (), and ADS solution of original circuit ( ) at load= 50 
. Excellent agreement is achieved
even though such data were never used in training.

We call (15) or (16) as the HB representation of DNN. To im-
plement DNN into HB circuit simulation, we program either (15)
or (16) within the HB environment. In (15), given input harmonic
values ,theDNNwillproduceoutputharmonic. In(16),given
input waveforms , the DNN will produce output waveforms.
Noticethat (16)usesonlyand (withoutexplicitderivativevari-
ables) at all time points. The HB simulator will solve the overall
HB equation including DNN during HB simulation.

In this way, the variables for HB simulation due to DNN are
only , . All higher order information of inputs and outputs
will be implied by and through Fourier transformations.
Since the total number of nonlinear nodes from the DNN is
times less than that in the circuit representation of DNN, this
HB simulation will have further computation speed up.

Notice that (15) or (16) is only used as a plug when DNN is
plugged to the circuit simulator. The DNN model itself is the
dynamic equation of (3). Since DNN is a continuous time-do-
main model, the model is independent of the choice of number
of harmonics and number of time samples. Furthermore, DNN
is independent of the number of tones in harmonic balance sim-
ulation. This flexibility of the DNN is clear progress over the
existing behavioral neural models whose structure is dependent
on the number of tones.

Although different in their implementations in circuit simu-
lators, the two representations of the DNN, i.e., circuit and HB
representations, are numerically equivalent. The former repre-
sentation is more convenient to implement and the latter is com-
putationally more efficient.

(14)
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E. Discussions

The proposed DNN automatically achieves model reduction
effect since the DNN order can be chosen to be much less than
the order of the original nonlinear circuit. By adjusting, we can
conveniently adjust the order of our model. Another factor in the
DNN model is that the number of hidden neurons in rep-
resents the extent of nonlinearity between dynamic inputs and
dynamic outputs. By adjusting the number of hidden neurons,
we can conveniently adjust the degree of nonlinearity needed
in the DNN model. Such convenient adjustments of order and
nonlinearity in DNN make the model creation much easier than
conventional equivalent circuit based approaches where manual
trial and error may be needed to create/adjust the equivalent cir-
cuit topology and the nonlinear equation terms in it.

III. D YNAMIC -MODELING EXAMPLES

A. DNN Modeling of Amplifier

This example shows the modeling of nonlinear effects of an
amplifier using the DNN technique. The amplifier internally has
9 n-p-n transistors modeled by Agilent-ADS nonlinear models
Q34, Q37, and HP AT 41411 [31] shown in Fig. 3.

We train our DNN to learn the input–output dynamics of the
amplifier. We choose a hybrid two-port formulation with

as input, and as output. The
DNN model includes

(17)

(18)

This input–output definition allows the model to be able to in-
teract with external connections with other nonlinear circuits in
a system level simulation.

The training data for the amplifier are gathered by exciting
the circuit with a set of frequencies ( GHz,
step-size 0.05 GHz), powers ( dBm, step-size 2
dBm), and load impedances ( , step-size 10 ). In
initial training, Fourier Transform sampling frequencies ranged
from 47.5 to 67.5 GHz. Final training is done with optimization
over harmonic balance such that modeled harmonics match
original harmonics. We trained the model in multiple ways
using different number of hidden neurons and orders () of the
model as shown in Table I. Testing is performed by comparing
our DNN model with the original amplifier in ADS, with
different set of signals never used in training, i.e., different
test frequencies ( GHz, step-size 0.05 GHz),
powers ( dBm, step-size 2 dBm) and loads (40,
50, and 60 ). The model is compared with original circuit
in both time and frequency domains, and excellent agreement
is achieved. Fig. 4 shows examples of spectrum comparisons.
An additional comparison between our DNN model and the

(a)

(b)

Fig. 5. Envelope transient analysis results for DNN amplifier model with
�=4-DQPSK modulation. (a) DNN output power spectrum when the amplifier
model operates at 1-dB compression point. (b) DNN output power spectrum
when the amplifier model operates at 10-dB compression point.

original amplifier is made using the 1-dB compression point.
For example, at the excitation frequency 1.175 GHz, the 1-dB
compression point is 35.6 dBm for the DNN model agreeing
well with its original value of 35.0 dBm from the original
amplifier. We also applied envelope transient analysis to the
DNN amplifier model using the ADS envelope simulator. The
model was driven with a 1.15-GHz carrier and modulated by a

differential quadrature phase-shift keying (DQPSK) signal
at 48.6 kb/s. The result of the simulation is illustrated in Fig. 5,
showing two cases of power spectral regrowth at the DNN
output, Fig. 5(a) when the amplifier model operates at 1-dB
compression point, and Fig. 5(b) when the amplifier model
operates at 10-dB compression point.

To further demonstrate that the DNN model represents cir-
cuit internal behavior independent of external signals, we show
a different use of the proposed technique for this amplifier. We
use exactly the same formulation of the amplifier DNN model
to handle two-tone harmonic balance effects. To further add to
the challenge of this modeling task, we perform the training
of the DNN using one-tone data and one-tone formulation of
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TABLE I
AMPLIFIER: DNN ACCURACY FROM DIFFERENTTRAINING

Fig. 6. Amplifier two-tone simulation result from DNN, which is trained under one-tone formulation: spectrum comparison between DNN () and ADS solution
of original circuit ( ). Excellent agreement is achieved even though such two-tone data were never used in training.

training (optimization). After training is finished, we will use
the model for two-tone simulation. This ability of the DNN is
progress over existing behavioral-based neural models where

the model structure has to be different for different number of
tones. The proposed DNN achieves uniform format regardless
of the number of tones. For this demonstration, the training data
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Fig. 7. Amplifier two-tone simulation result from DNN: time-domain
comparison between DNN (—) and ADS solution of original circuit (o). Good
agreement is achieved even though such data were never used in training.

for the amplifier are gathered by exciting the circuit with several
patterns of input signal ): fundamental frequencies (0.2
GHz, 0.22 GHz), powers at the fourth and the fifth harmonics
( dBm, step-size 2 dBm), and the total number of
harmonics considered with harmonic balance simulation is 20.
Testing is performed by comparing our model with original am-
plifier, with two-tone signal never used in training. For the first
tone, fundamental frequency is 0.84 GHz, powers (23 dBm,

21 dBm). For the second tone, fundamental frequency is 1.05
GHz, powers ( 23 dBm, 21 dBm). The number of harmonics
in the HB simulation for each tone is four, leading to a total
number of 20 harmonics and intermodulated frequencies in the
output signal. The two-tone solution from the DNN model is
compared with the ADS solution of the original amplifier in
both frequency and time domains, and excellent agreement is
achieved as shown in Figs. 6 and 7, respectively. We also com-
puted the third-order intercept point (IP3). For example, when
the two-tone input powers are set to23 dBm, the IP3 computed
from our DNN model is 2.24 dBm, which is a good estimation
of the original IP3 of 2.38 dBm from the original amplifier.

This example demonstrates that the same DNN structure can
be used for single-tone or multitone harmonic balance simu-
lations providing simplicity and flexibility in implementation,
model development, and model usage over the existing neural
network methods.

Fig. 8. Mixer equivalent circuit to be represented by a DNN model.

Fig. 9. MixerV output: time-domain comparison between DNN (—) and
ADS solution of original circuit (o). Good agreement is achieved even though
such data were never used in training.

B. Mixer DNN Modeling

This example illustrates DNN modeling of a mixer. The cir-
cuit internally is a Gilbert cell with 14 n-p-n transistors in ADS
[31] shown in Fig. 8. The dynamic input and output of the
model is defined in hybrid form as and

. The DNN model includes

(19)

(20)

The training data are gathered in such way that RF input fre-
quency and power level changed from 11.7 to 12.1 GHz with
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TABLE II
MIXER: DNN ACCURACY FROM DIFFERENTTRAINING

(a)

(b)

Fig. 10. DBS receiver subsystem. (a) Connected by original detailed equivalent circuit in ADS. (b) Connected by our DNNs.

step size 0.05 GHz and from45 dBm to 35 dBm with step
size 2 dBm, respectively. Local oscillator (LO) signal is fixed
at 10.75 GHz and 10 dBm. Load is perturbed by 10% at every
harmonic in order to let the model learn load effects. The DNN
is trained with different numbers of hidden neurons and orders
( ) as shown in Table II. Testing is done in ADS using input
frequencies ( GHz, step size 0.05 GHz) and
power levels ( 44, 42, 40, 38, 36 dBm). The agree-
ment between model and ADS is achieved in time and frequency
domains even though those test information was never seen in
training. Fig. 9 illustrates examples of test in the time domain.

C. Nonlinear Simulation of DBS Receiver System

To further confirm the validity of the proposed DNN, we also
trained a DNN model representing another amplifier (gain stage
amplifier) using a way similat to that in Section III-A, and com-
bined the three trained DNNs of mixer and amplifiers into a DBS
receiver subsystem [32], where the amplifier trained in Sec-
tion III-A is used as the output stage. The overall DBS system
is shown in Fig. 10.

We have incorporated the DNN models of the amplifiers and
mixer into harmonic balance simulation in two ways. The first

way is to use the circuit representation of DNNs as described in
Fig. 2(a) incorporated into ADS software. This is achieved by
constructing the equivalent circuit in ADS using capacitors, con-
trolled sources, and algebraic expressions representing
neural network function. The second way is to program the
HB representation of DNN model of Fig. 2(b) for amplifiers
and mixer according to (16). The overall DBS system output
solved by the efficient HB representation of DNN’s match com-
pletely with that solved using circuit representation of DNNs in
ADS, confirming the consistency between the two representa-
tions of DNN as shown in Fig. 11(a). Next, we compare ADS
harmonic balance simulation with the original DBS system in
Fig. 10(a) with that using DNN models of amplifiers and mixer
in Fig. 10(b). The overall DBS system solution using DNNs
matches that of the original system as shown in Fig. 11(b),
even though these obviously distorted signals were never used
in training of any of the DNNs.

We also performed Monte Carlo analysis of the original and
the DNN-based DBS systems under random sets of RF input fre-
quencies and power levels. The statistics from the DNN-based
system simulation, shown in Fig. 12, match those from the orig-
inal system. The CPU for 1000 analyses of the DBS system
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(a)

(b)

Fig. 11. (a) DBS system output. Comparison between system solutions using
HB representation of DNN models (—), and circuit representation of DNN
models (x). The solutions from the two representations of DNN are in complete
agreement with each other. (b) DBS system output: comparison between system
solutions using DNN models (—), and ADS simulation of original system (o).
Excellent agreement is achieved even though these nonlinear solutions were
never used in training.

using original circuits, using circuit representation of DNNs,
and using HB representation of DNNs are 6.52, 3.94, and 0.81 h,
respectively, showing efficiency of the DNN-based system sim-
ulation.

A further comparison is made between the proposed dy-
namic neural network, the conventional static neural network
approach, and the conventional behavioral modeling approach
(nonneural network approach). We trained three static neural
networks using the static– (current-charge) model of [9]
to learn the two amplifiers and the mixer, and incorporated
these models into ADS using NeuroADS [33]. The overall
DBS system simulation using the static neural models was
performed in ADS. As expected, such static models, while
suitable for intrinsic FET modeling, are not accurate enough
for amplifier and mixers even though the model incorporates

Fig. 12. Histogram of power gain of DBS system for 1000 Monte Carlo
simulations with random input frequency and amplitude.

charge information. The overall error in the output signal of
the DBS system is 6.1% relative to original detailed system
simulation.

For the case of conventional behavioral modeling approach,
we constructed three behavioral models to represent the two am-
plifiers and the mixer. The behavioral models were obtained in
two ways, one way is to use the data-based behavioral model
[31], and another way is to use optimization to optimize the be-
havioral model parameters in [31] to best match the behavior of
the original amplifiers and the mixer. An overall DBS system
simulation with the best behavioral models was used. As ex-
pected, the behavioral models run extremely fast, and provide
only an approximate solution. Table III provides a summary of
model test error for the two amplifiers and one mixer through
different methods. Table IV provides comparisons of computa-
tion speed and accuracy with the different methods for the DBS
system simulation. It is observed that the proposed DNN (i.e.,
dynamic neural network) approach provides the best overall per-
formance being much faster than original system simulation and
much more accurate than both the conventional behavioral mod-
eling approach, and the static neural network approach.

IV. CONCLUSIONS

This paper has presented a neural network method for mod-
eling nonlinear microwave circuits and its applications for high-
level simulation. The model is derived in the most effective
format, i.e., continuous time-domain dynamic format and can
be developed from input–output data without having to rely
on internal details of the circuits. A novel training scheme al-
lows the training of DNN to learn from either time or frequency
domain input–output information. After being trained, the pro-
posed model can be conveniently incorporated into existing sim-
ulators. The proposed DNN retains or enhances the advantages
of learning, speed, and accuracy as in existing neural network
techniques; and provides additional advantages of being theoret-
ically elegant and practically suitable for diverse needs of non-
linear microwave simulation, e.g., standardized implementation
in simulators, suitability for both time- and frequency-domain
applications, and multitone simulations. The technique allows
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TABLE III
DBS SYSTEM COMPONENTMODELS: COMPARISONBETWEENCONVENTIONAL BEHAVIORAL MODEL, STATIC NEURAL MODEL, AND DNNS

TABLE IV
DBS-RECEIVER SUBSYSTEM: COMPARISONBETWEEN SYSTEM SIMULATION USING CONVENTIONAL BEHAVIORAL MODEL, STATIC NEURAL MODEL, DNNS,

AND DETAILED ORIGINAL CIRCUIT

further realizing the flexibility of neural-based approaches in
nonlinear microwave modeling, simulation, and optimization.
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