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Abstract—A neural network formulation for modeling non-  approaches addressing this issue are, e.g., behavioral modeling
linear microwave circuits is achieved in the most desirable [14], [15], equivalent circuit [16], and model reduction [17]
format, i.e., continuous time-domain dynamic system format. echniques, among which the behavioral modeling approach is
The proposed dynamic neural network (DNN) model can be . . A .
developed directly from input—output data without having to pres_ently the major method for system simulation in industrial
rely on internal details of the circuit. An algorithm is developed ~applications. Recently, several ANN-based methods have been
to train the model with time or frequency domain information.  proposed for nonlinear modeling [8], [9], [18]-[23]. These
Efficient representations of the model are proposed for convenient works demonstrated neural networks as a useful alternative to the
incorporation of the DNN into high-level circuit simulation. conventional approaches. The ANN approach has the potential
Compared to existing neural-based methods, the DNN retains or . . .
enhances the neural modeling speed and accuracy capabilities,f‘O learn the nonlmear_bghawor ff‘?m measured or simulated
and provides additional flexibility in handling diverse needs of input-output data, avoiding otherwise manual effort of devel-
nonlinear microwave simulation, e.g., time- and frequency-domain oping equivalent circuit topology. Similarly, ANN also avoids
applications, single-tone and multitone simulations. Examples of the need of availability of original circuit equations as required
dynamic modeling of amplifiers, mixer, and their use in system i, model reduction techniques. The universal approximation
simulation are presented. . . . .

property of ANN provides a theoretical basis of representing

Index Terms—Modeling, neural networks, nonlinear circuits,  the full analog solutions of the circuit, overcoming the accuracy
optimization, simulation. limitations in conventional behavioral models. The evaluation

of the ANN from input to output is very fast [24].
|. INTRODUCTION Among the existing nonlinear neural modeling approaches,
most of the earlier methods are developed under FET mod-

RTIFICIAL neural networks (ANNS) have recently beenyy o qtivations [8], [9], [18], [19]. The hybrid circuit/neural

recognized as a useful tool for modeling and design Op.H'etwork approach in [8], [18] assumes the existence of a good

rrg'zo\?:?oripr%bk_errrr:s '?}RF at?d mlcrowavefclcl)mputsr_-mded .dfs'gfauivalent circuit of the transistor and uses neural network to
( ) [1]-13]. They have been successfully used in a variety rovide equivalent circuit parameters. The Volterra-kernel-based

applications such as queling and_ optimization of high-spe proach [19] is formulated with first-order Volterra kernel,
very Iarge scale '”t?gr?“o” (VL.SI) _mterconnects [4], C(_)pl_"’m"i}vhich are represented by the ANN. Th&) (current-charge)
waveguide (CPWjcircuits [5], spiralinductors [6], EM optimizag, ¢ ol model approach [9] uses an ANN to provide FET intrinsic

tion [7], global modeling [8], yield optimization [9], and circuit .., ot and charges from intrinsic terminal voltages and phys-

sy_nthe3|s [10], [1.1]'| Knowlgdg:e—?aged.?ppr(;)alcr;es (f[?]mb 'U{E;%I/geometrical parameters. These are some of the pioneering
microwave empirical or equivalent Circuit models together wi eps in ANN-based nonlinear modeling. However, they are not

neural networklearning_have _al_so been studied [7]_’ [1_2_]' [13] E‘hfﬁcient to address the difficulties in circuit level modeling
furtherimprove the training efficiency and model reliability.

Thi dd ) ant lcati ¢ ANNsuch as amplifiers and mixers. For example, the hybrid method
s ‘I’.apf.r at resslf*s an .'mp.‘t’r a”d ‘li.pp Ica d'%” 0 Thri**limited by the availability and quality of the equivalent circuit
I-€., appiication o honfinear circurt modeting and design. odels; the first-order Volterra kernal assumption in [19] which
could be a significant area because of the increasing need s sufficient under FET device senarios may not be suitable
efficient CAD algorithms in high-level and large-scale nonline%r nonlinear circuits. Thef—Q model in [9] can represent
m!crow_ave_de5|gn. The_brute-force way 1S t(_) use _or|g|na| (_jﬁfgh nonlinearities and is suitable for harmonic balance (HB)
tailed circuit representation for system level simulation, leadi ulation. However. its use of static neural networks makes
to accurate but extremely slow computation. ConVem'onﬁusuitabIe only for FET intrinsic modeling and not suitable for

, _ _ _ _ modeling higher order dynamic effects in large nonlinear circuits
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the limitations in conventional behavioral models by providingpectively, whereV,, and NV, are the number of inputs and out-
bidirectional behavior allowing more accurate system simulputs. The original nonlinear circuit can be generally described
tion. Recurrent neural network approach [22] achieves a discretestate equation form as

time-domain model based on backpropagation-through-time )

training to learn the circuit input—output relationship. These #(t) =¢(2(1), u(?))

works represent important recent milestons in the direction of y(t) =(z(t),u(t)) Q)
ANN-based nonlinear modeling. However, because of the spe- . . .
cificformats ofthese existing methods, there still existlimitation\élhere"’ Is anNs vector of state var'lables ang' Is the number .
due to difficulties in their incorporations in standard nonline f states and+ represent nonlinear functions. In a modi-

simulators, in establishing relations with large-signal measu ée—lc: nodal formultan(}n_ [38],tthe state veicmgrt) ||r;cludes nodal q
ment, limited flexibility for different simulations, or potentialVO ages, currents of inductors, currents of voltage sources, an

curse of dimensionality in multitone simulations. Chﬁrge Of. nopllngﬁr capacitors. 1 ldbe al
The most ideal format to describe nonlinear dynamic or a circuit with many components, (1) could be a large set

models for the purpose of circuit simulation is the continuou.fg nonlinear differential equations. For system-level simulation
time-domain format, e.g., the popularly accepted dynamif&cluding many circuits, such detailed state equations are too
current-charge format in many harmonic balance simulatof&'9e, computationally expensive, and sometimes even unavail-

This format, in theory, best describes the fundamental esseREE at system level. Therefore, a simpler (reduced order) model
of nonlinear behavior, and, in practice, is most flexible to fiRPProximating the same dynamic input-output relationships is

most or nearly all needs of nonlinear microwave simulation,¢eded.
task not yet achieved by the gmstmg ANN-based techmqueé. Formulation of DNN Model
In the neural network community, such types of networks have
been studied, e.g., Hopefield network [25], recurrent network Let n be the order of the reduced model, < Ns. Let
[26], etc. However, they were mainly oriented for digital signat” (1) = d'y(t)/dt' andw(t) = d'u(t)/dt' denote the
processing such as binary-based image processing [26],itbrorder derivatives o(t) andu(t) with respect ta;, respec-
system control with online correction signals from a physicéively. In order to derive a dynamic model, the original problem
system [27]. They are not directly suitable for microwavél) is reformulated into reduced order differential equations
modeling. We must address continuous analog signals and uaing the input—output variables as
CAD method must be able to predict circuit behavior offline.

For the first time, an exactly continuous time-domain dy"™ (t) = f (ym_l)(t)ay(n_z)(t% cy(t),
namic-modeling method is formulated using neural networks n neil
for large-signal modeling of nonlinear microwave circuits u™ (), "), ... ’"<t>) )

and systems in this paper. The model, called dynamic neugdlare ¢ represents nonlinear functions. In this paper, we pro-

network (DNN) model, can be developed directly from,qq 45 employ an ANN to represent the nonlinear relationships

L?]put_—ou_ttp utAdate|1 W't.?r? ut.he:jvmg tg rglty c;n !ntﬁ:nal dgtaills_t etween the dynamic information of inputs and outputs.u;et
€ cireuits. An algorithm 1S described 1o train the model wi eaN, vectori = 1,2,...,n.Let f ,ny representa multilayer

tlm_e- or frﬁquency—domaln mfo(;mauc;}n.h Efﬁﬁ'ent rgﬂreserlgerceptron neural network [1] with input neurons representing

tca;]‘\’/"; i‘éfnh einigr“‘o"’;;‘ie%“’ﬂos‘? e t f‘ttt oo s their derivativesi'y /d' i = 1,2,.....n—1, andd*u/dt",
y por: Ito circuit Simutators Tor high-1eve, 1,2,...,n; and the output neuron representidity/dt™.

and large-scale nonlinear microwave design. The model e proposed DNN model is derived from (2) as

be standardized even with diverse requirements of nonlinear

qu_eling _suc.h as single-tone and myltitone applications, and D1 (t) =vo(t)

training with time- or frequency-domain data.

This paper is organized as follows. In Section II, we for- :

mulate the new dynamic neural network modeling technique D1 (t) =v, (1)

and propose a training method for training the DNN. Two ap- 0 (£) = s e (v (8) ) )

proaches of incorporating the DNN models into circuit simula- Un ANN (n () Un—188); - - U1LL);

tors are proposed, one through a circuit representation and an- w™ (), (1), ,u(t)) 3)

other through an efficient harmonic-balance-based representa-

tion. In Section II, examples of dynamic modeling of ampliand the inputs and outputs of the model a(é) andy(t) =

fiers, mixer, and their use in system simulation are present&d(t), respectively.

Accuracy and Speed of using the DNN versus using Conven_The overall DNN model (3) is in a standardized format for
tional approaches are compared. typical nonlinear circuit simulators. For example, the left-hand

side of the equation provides the charg®) (r the capacitor
Il. DNN M ODELING OF NONLINEAR CIRCUITS: FORMULATION  Part, and the right-hand side provides the curréppért, which
AND DEVELOPMENT are the standard representation of nonlinear components in
o o , many harmonic balance (HB) simulators. The proposed DNN
A. Original Circuit Dynamics overcomes the limitations of the previous stafieQ neural
Letu = [uy us...un,]T andy = [y 2. .. yNy]T be vectors model of [9] which was only suitable for intrinsic FETs. The
of the input and the output signals of the nonlinear circuit, rgegroposed DNN can provide dynamic current-charge parameters
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for general nonlinear circuits with any number of internal - '_A(’TL[.
nodes in original circuit. The order (or the number of hidden
neurons inf ,ny) represents the effective order (or the degree-------- \ sg:ctgﬁn
of nonlinearity) of the original circuit that is visible from the |/ ;
input—output data. Therefore, the size of the DNN reflects th | i V(o)
internal property of the original circuit rather than external!
signals and, as such, the model does not suffer from the cur | gl
of dimensionality in multitone simulation. ! Microwave
I E Circuit

C. Model Training

Our DNN model will represent a nonlinear microwave Circuit — yong) o204  ye) u®e) o™ .. u)

only after we train it with data from the original circuit. We use
training data in the form of input/output harmonic spectrums
which can be obtained through simulation or measurements. L [ A7 | [ A®7 | - Input

b i h X S
U(w) andY (w) be suchinputand output spectrums, respectively 4 pectrum
w € Q,whereQ is the set of spectrum frequencies. The training
data are generated using a variety of input samples, leading w | ) ]
I7 v ; ; Fig. 1. Initial training: to train thef, part in time-domain using spectrum
aset ff2datd]njl(we)ln6:jr}\(?ifsnﬁ(1ue))t7()\fgl]ﬁLer:]nbles;rtgfeSZ?an?eli index, data, whered() is the time-derivativggperator corresponding to (4).
m=12,..., M, .
A second set of data, called testing data should also be ob- o . )
tained similarly from the original circuit for model verificationdone in the frequency domain involving HB solutions of the DNN
The testing data should be generated using a set of input s&fpdel- The error function for training is
ples different from those used in training data. o
Initial Training: We first train thef ,xx part of the DNN 1 % 2
. X L ANT . Ey=— Y -Y 8
model in the time domain directly or indirectly using time-do- T2 Z Z H m(w) m(w)|| ®)
main information. Suppose matrik(w, t) represents the coef-
ficients of Inv_erse Fourier Transform [29]. Let the derivative q;vherer(w) andY,, (w)
A(w,t) w.r.t timet be represented as

9
Ul(o)

m=1weN

represent spectrum from model and
mth sample of training data, respectively. In order to achieve
DA (w, 1) the harmonic solution¥,,,(w) from the DNN model, we apply

AD(w,t) = Y (4) differentiation over thef ,xx Using the adjoint neural network
method [30]. The resulting derivatives fit the Jacobian matrix of
The training data foif , xx Can be derived from harmonic balance equations.
e i — The training technique presented here demonstrates that both
Uy (1) = Z A (1) ¥ (w) ®)  time-and frequency-domain data can be used for DNN training.
, wee _ The compatibility of DNN training with large-signal harmonic
a)(t)=> AV (w,t) - Up(w). (6) datais animportant advantage over the discrete recurrent neural
wen network approach [22] whose training is limited to time-domain

The initial training is illustrated in Fig. 1. The objective ofonly.
the training is to adjust ANN internal parameters to minimize ) o )
the error function, as shown by (7), at the bottom of this pagg; USe of the Trained DNN Model in Circuit Simulation
wherel’ is the set of time points used by Fourier Transform [29]. 1) Method 1—Circuit Representation of DNMn exact cir-

This process is computationally efficient (without involvingcuit representation of our DNN model can be derived as shown
harmonic balance simulation) and can train jhe.y from a in Fig. 2(a). The state variables are represented by voltages on
random (unknown) start to an approximate solution. Becauseit capacitors with their currents controlled by other state vari-
all input—output information in each sample of training data is ables, e.g.(C' - 91(t) = w2(¢), whereC = 1. The dynamic
the same instance of time, this proposed technique is completelgdel inputs are defined as voltages on unit inductors with their
free from restrictions on sampling frequencies, representingarrents controlled by input dynamics of different orders, e.g.,
clear advantage over the previous discrete recurrent neural nét!(t) = I - u(t), wherel, = 1. In this way, the trained model
work method [22]. can be conveniently incorporated into available simulation tools

Final Training: The DNN model is further refined using re-for high-level circuit and system design. This can be achieved in
sults from initial training as a starting point. Final training isnost existing simulators without doing computer programming.

B =3 303 [Faes (50700, 3, 0.8 0). () - 520 ™
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o o Fig. 3. Amplifier circuit to be represented by a DNN model.
DNN Since
y u . .
H(3.i)=0 y () =) AYw,1) Y(w) (11)
we
O—— —oO . .
() =>" A (w,1) - Uw) (12)
(b) wenN

Fig. 2. Representations of DNN for incorporation into high-level simulatioPremultiplying B(w, t) to the f s xx €quation in DNN model of
(a) Circuit representation of the DNN model. (b) HB representation of the DN{8), we have the HB equation for the DNN as (13), shown at the

ggd:llinjgr?cgﬁg é‘éﬂ?ﬁi@?ﬂa tions are dlifferent only in implementation and thﬁ_}ﬁttom of this page, whe¥(«) is the Fourier Transform of the
time-domain signaj(t) as defined earlier.
Substituting (11) and (12) into thf, yx equation of the DNN

2) Efficient HB Representation of DNN:lere we propose in (3), we have an input-output waveform equation, as shown
another method for incorporating the DNN model into circuiy (14) at the bottom of the following page.
simulation. We use HB as the circuit simulation environment. et ¢, & be vectors containing(t) andu(t) for all the time
Through the formulation described below, we are able to elimamplest, ¢t € 7. Let Y andU be vectors containin’ (w)
nate most of the state variables in DNN by Fourier Transforghd U(w) at all the spectrum components w € €. Since
and use even fewer variables during HB simulation, furthq(%t), B(w, 1) andA(i)(w,t) contain Fourier base functions
speeding up circuit simulation. The HB representation is showfd their time derivatives, they are independent of any signals in
in Fig. 2(b). the circuit and are constants during HB simulation. Therefore,

Let U(w) andY (w) be the Fourier Transform of inpui(¢) the HB equations for DNN in (13) can be expressed as

and outpuiy(t), respectively. LeB(w, t) represent the Fourier 5 oA
Transform matrix, such that F(Y,U)=0 (15)
whereF() means “ nonlinear functions of ”. Equation (14) can
Y(w) = ZB(“”t) ~y(t) ) be expressed as
teT H(y,4) =0 (16)
U(w) = Z B(w,t) - u(t). (10)
Py whereH () also means “ nonlinear functions of ".
> Bw,t): Y A™M(w,t) - ¥(w)
teT we
- Z B(w7 t) ) fANN (Z A(n_l)(wv f) ’ Y(w)v
teT we
Z A(n_Z)(w7t) : Y(w)7 R Z A(wv f) ’ Y(w)v Z A(n) (w'/ f) ’ U(w)'/
weR we we

S AV (1) UW),..., S Aw,1)- U(w)) =0 (13)
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Fig. 4. Amplifier output: spectrum comparison between DNIl,(and ADS solution of original circuit{) at load= 50 2. Excellent agreement is achieved
even though such data were never used in training.

We call (15) or (16) as the HB representation of DNN. To im- Notice that (15) or (16) is only used as a plug when DNN is
plement DNN into HB circuit simulation, we program either (15plugged to the circuit simulator. The DNN model itself is the
or (16) within the HB environment. In (15), given input harmoniclynamic equation of (3). Since DNN is a continuous time-do-
valuedJ, the DNNwillproduce outputharmorﬁﬁ In(16),given main model, the model is independent of the choice of number
input waveformsi, the DNN will produce output waveforrnds  of harmonics and number of time samples. Furthermore, DNN
Noticethat (16) uses onfyandu (withoutexplicitderivative vari- is independent of the number of tones in harmonic balance sim-
ables) at all time points. The HB simulator will solve the overalllation. This flexibility of the DNN is clear progress over the
HB equation including DNN during HB simulation. existing behavioral neural models whose structure is dependent

In this way, the variables for HB simulation due to DNN ar@n the number of tones.
only Y, U. All higher order information of inputs and outputs Although different in their implementations in circuit simu-
will be implied byf’ andU through Fourier transformations.lators, the two representations of the DNN, i.e., circuit and HB
Since the total number of nonlinear nodes from the DNN is representations, are numerically equivalent. The former repre-
times less than that in the circuit representation of DNN, thigentation is more convenient to implement and the latter is com-
HB simulation will have further computation speed up. putationally more efficient.

> AW (w,) Y B(w,7) - y(7)

— fann Z A(n_l)(wvt) : Z B(w, ) -y(7),
Z A("_2)(w,t) . Z B(w, ) -y(7),..., Z A(w,t) - Z B(w,T) - y(7),
ST AM (W, )Y B(w,r)-u(r),..., Y Aw,t)- Y Blw,7)-u(r) | =0 (14)

weN TET weR TET
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o_
-10 -

E. Discussions

The proposed DNN automatically achieves model reductic
effect since the DNN order can be chosen to be much less thag -20
the order of the original nonlinear circuit. By adjustingve can 8 .3 |
conveniently adjust the order of our model. Another factor intt g
DNN model is that the number of hidden neurong ity rep-
resents the extent of nonlinearity between dynamic inputs a2
dynamic outputs. By adjusting the number of hidden neuror3 -60 -
we can conveniently adjust the degree of nonlinearity needs 70 -
in the DNN model. Such convenient adjustments of order aig o |
nonlinearity in DNN make the model creation much easier th: vl
conventional equivalent circuit based approaches where mar 90 | “ ﬂHIW
trial and error may be needed to create/adjust the equivalent:  -100 ull |

T spectru

-50 -

cuit topology and the nonlinear equation terms in it. -100 -50 Y
Frequency offset (kHz)
[ll. DYNAMIC-MODELING EXAMPLES (@
A. DNN Modeling of Amplifier 07
-10 -

This example shows the modeling of nonlinear effects of ¢
amplifier using the DNN technique. The amplifier internally hag 20 1
9 n-p-n transistors modeled by Agilent-ADS nonlinear mode2 -30 -
Q34, Q37, and HP AT 41411 [31] shown in Fig. 3. g 40 -

We train our DNN to learn the input—output dynamics of th 8
amplifier. We choose a hybrid two-port formulation with=
[vin, iouT)T as input, andy = [in, vout|? as output. The
DNN model includes

i (8) =fann (é;fl)(t) i (), i (1),

“1(17\11) (t), 01(17\11_1) ()., UIN(t)) (17) -100 : : i ,
-100 -50 0 50 100

Output power spectru
] 1 1 1]
&8 83 8¢

. .

2
U(()n[%T( ) fAl\N2 ('U(()LT)(IL) v(<)nUT)( )7 v 7UOUT(t)-/ Frequency offset (kHz)
(n) (n—1) b
o (), o (@), - v (), ®)
(n) (n—1) . Fig. 5. Envelope transient analysis results for DNN amplifier model with
OLT(f) tour ( /)7 s 7ZOUT(t)) . 7 /4-DQPSK modulation. (a) DNN output power spectrum when the amplifier

18 model operates at 1-dB compression point. (b) DNN output power spectrum
(18) when the amplifier model operates at 10-dB compression point.

This input—output definition allows the model to be able to in-
teract with external connections with other nonlinear circuits @figinal amplifier is made using the 1-dB compression point.
a system level simulation. For example, at the excitation frequency 1.175 GHz, the 1-dB
The training data for the amplifier are gathered by excitingPmpression point is-35.6 dBm for the DNN model agreeing
the circuit with a set of frequencie®.05 ~ 1.35 GHz, well with its original value of—35.0 dBm from the original
step-size 0.05 GHz), powers-80 ~ —14 dBm, step-size 2 amplifier. We also applied envelope transient analysis to the
dBm), and load impedances85 ~ 65 €, step-size 1@). In DNN amplifier model using the ADS envelope simulator. The
initial training, Fourier Transform sampling frequencies rangefodel was driven with a 1.15-GHz carrier and modulated by a
from 47.5 to 67.5 GHz. Final training is done with optimizatiorr/4 differential quadrature phase-shift keying (DQPSK) signal
over harmonic balance such that modeled harmonics maﬁ;tlff]-SG kb/s. The result of the simulation is illustrated in Flg 5,
original harmonics. We trained the model in multiple way§howing two cases of power spectral regrowth at the DNN
using different number of hidden neurons and ordejof the output, Fig. 5(a) when the amplifier model operates at 1-dB
model as shown in Table I. Testing is performed by comparig@mpression point, and Fig. 5(b) when the amplifier model
our DNN model with the original amplifier in ADS, with operates at 10-dB compression point.
different set of signals never used in training, i.e., different To further demonstrate that the DNN model represents cir-
test frequencies0(975 ~ 1.325 GHz, step-size 0.05 GHz), cuit internal behavior independent of external signals, we show
powers (29 ~ —15 dBm, step-size 2 dBm) and loads (40a different use of the proposed technique for this amplifier. We
50, and 60%2). The model is compared with original circuituse exactly the same formulation of the amplifier DNN model
in both time and frequency domains, and excellent agreemémhandle two-tone harmonic balance effects. To further add to
is achieved. Fig. 4 shows examples of spectrum comparisotie challenge of this modeling task, we perform the training
An additional comparison between our DNN model and thaf the DNN using one-tone data and one-tone formulation of
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Fig. 6. Amplifier two-tone simulation result from DNN, which is trained under one-tone formulation: spectrum comparison betwedB)RNYIADS solution

of original circuit (0J). Excellent agreement is achieved even though such two-tone data were never used in training.

training (optimization). After training is finished, we will usethe model structure has to be different for different number of
the model for two-tone simulation. This ability of the DNN istones. The proposed DNN achieves uniform format regardless

progress over existing behavioral-based neural models whef¢he number of tones. For this demonstration, the training data
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Fig. 7. Amplifier two-tone simulation result from DNN: time-domain
comparison between DNN (—) and ADS solution of original circuit (0). Good
agreement is achieved even though such data were never used in training.

»

- 1 1 1 1 1 1 1 1 1 1
for the amplifier are gathered by exciting the circuit with severa 00 02 04 06 08 10 1.2 14 16 1.8 20
patterns of input signabix(¢): fundamental frequencies (0.2 Time (ns)

GHz, 0.22 GHz), powers at the fourth and the fifth harmonics
ig. 9. MixerV;r output: time-domain comparison between DNN (—) and

(_24 N,_20 dBm’ step—slze 2 dBm,)’ and the to,tal nu,mbe,r d,iDS solution of original circuit (0). Good agreement is achieved even though
harmonics considered with harmonic balance simulation is 2fch data were never used in training.

Testing is performed by comparing our model with original am-
plifier, with two-tone signal never used in training. For the firsg_ Mixer DNN Modeling

tone, fundamental frequency is 0.84 GHz, power@3 dBm, . . . . .
—21 dBm). For the second tone, fundamental frequency is 1.05Th|s example illustrates DNN modeling of a mixer. The cir-

GHz, powers £23 dBm,—21 dBm). The number of harmonicsCUit internally is a Gilbert cell with 14 n-p-n transistors in ADS

in the HB simulation for each tone is four, leading to a totajt?l] shown in Fig. 8. The dynamic input and output of the

. . L odel is defined in hybrid form ag8 = [vrFr,vr0,irr])T and
number of 20 harmonics and intermodulated frequencies in e linr, vrr]T. The DNN model includes

output signal. The two-tone solution from the DNN model id =

compared with the ADS solution of the original amplifier in () gy (n=1) 4y (n—2) i
both frequency and time domains, and excellent agreement is Urr(t) =fanxa (LRF ®),igp " (0):- - irr (),
achieved as shown in Figs. 6 and 7, respectively. We also com- vg}l(t), vg};l)(t), o ,vRF(t)) (19)
puted the third-order intercept point (IP3). For example, when (n) (n-1) (n-2)
the two-tone input powers are sett@3 dBm, the IP3 computed vrp () =fann2 (UIF (t),vrF (1), vrp (),
from our DNN model is 2.24 dBm, which is a good estimation o™ (1) ru<n_1)(t) vre(t)
of the original IP3 of 2.38 dBm from the original amplifier. ﬁg ’ gf_l) Jreees TRERE)
This example demonstrates that the same DNN structure can vro(t), 010 (t)s - vLo(t),
be used for single-tone or multitone harmonic balance simu- &), TV@), e t)) . (20)

lations providing simplicity and flexibility in implementation,
model development, and model usage over the existing neurlak training data are gathered in such way that RF input fre-
network methods. guency and power level changed from 11.7 to 12.1 GHz with
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TABLE I
MIXER: DNN ACCURACY FROM DIFFERENT TRAINING
No. of Hidden Testing Testing Order n Testing Testing
Neurons in Error for Time Error for in Error for Time Error for
Training (n=4) | Domain Data Spectrum Data Training Domain Data Spectrum Data
45 8.7E-4 6.7E-4 2 2.7E-3 1.9E-3
55 4.6E-4 2.0E-4 3 1.4E-3 8.6E-4
65 6.5E-4 4.6E-4 4 4.6E-4 2.0E-4
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DNN DNN model DNN model

LO model |—— of Gain Stage of Output Stage
+ of Mixer Amplifier Amplifier }
S

=

(b)
Fig. 10. DBS receiver subsystem. (a) Connected by original detailed equivalent circuit in ADS. (b) Connected by our DNNs.

step size 0.05 GHz and from45 dBm to—35 dBm with step way is to use the circuit representation of DNNs as described in
size 2 dBm, respectively. Local oscillator (LO) signal is fixedrig. 2(a) incorporated into ADS software. This is achieved by
at 10.75 GHz and 10 dBm. Load is perturbed by 10% at evergnstructing the equivalent circuitin ADS using capacitors, con-
harmonic in order to let the model learn load effects. The DNiolled sources, and algebraic expressions represeiftirg;
is trained with different numbers of hidden neurons and ordamsural network function. The second way is to program the
(n) as shown in Table Il. Testing is done in ADS using inputiB representation of DNN model of Fig. 2(b) for amplifiers
frequencies{1.725 ~ 12.075 GHz, step size 0.05 GHz) andand mixer according to (16). The overall DBS system output
power levels {44, —42, —40, —38, —36 dBm). The agree- solved by the efficient HB representation of DNN’s match com-
ment between model and ADS is achieved in time and frequerpetely with that solved using circuit representation of DNNs in
domains even though those test information was never seerAIDS, confirming the consistency between the two representa-
training. Fig. 9 illustrates examples of test in the time domairtions of DNN as shown in Fig. 11(a). Next, we compare ADS
harmonic balance simulation with the original DBS system in
C. Nonlinear Simulation of DBS Receiver System Fig. 10(a) with that using DNN models of amplifiers and mixer
To further confirm the validity of the proposed DNN, we alsdn Fig. 10(b). The overall DBS system solution using DNNs
trained a DNN model representing another amplifier (gain stageatches that of the original system as shown in Fig. 11(b),
amplifier) using a way similat to that in Section Ill-A, and comeven though these obviously distorted signals were never used
bined the three trained DNNs of mixer and amplifiers into a DB® training of any of the DNNs.
receiver subsystem [32], where the amplifier trained in Sec-We also performed Monte Carlo analysis of the original and
tion IlI-A is used as the output stage. The overall DBS systethe DNN-based DBS systems under random sets of RF input fre-
is shown in Fig. 10. quencies and power levels. The statistics from the DNN-based
We have incorporated the DNN models of the amplifiers araystem simulation, shown in Fig. 12, match those from the orig-
mixer into harmonic balance simulation in two ways. The firshal system. The CPU for 1000 analyses of the DBS system
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Fig. 12. Histogram of power gain of DBS system for 1000 Monte Carlo
simulations with random input frequency and amplitude.

Time (ns)

@

A  f=11.875GHz

025  Pre=-40dBm £=11.975 GHz charge information. The overall error in the output signal of

Pre=-42 dBm the DBS system is 6.1% relative to original detailed system
simulation.

For the case of conventional behavioral modeling approach,
we constructed three behavioral models to represent the two am-
plifiers and the mixer. The behavioral models were obtained in

P two ways, one way is to use the data-based behavioral model
[31], and another way is to use optimization to optimize the be-
havioral model parameters in [31] to best match the behavior of
the original amplifiers and the mixer. An overall DBS system
simulation with the best behavioral models was used. As ex-
pected, the behavioral models run extremely fast, and provide
only an approximate solution. Table Il provides a summary of

model test error for the two amplifiers and one mixer through

028 02 04 06 08 10 12 14 16 18 20" different methods. Table IV provides comparisons of computa-

Time (as) tion spee_d and accuracy with the different methods for the D_BS

®) system simulation. It is observed that the proposed DNN (i.e.,
dynamic neural network) approach provides the best overall per-

Fig. 11. (@) DBS system output. Comparison between system solutions usfagmance being much faster than original system simulation and

HB representation of DNN models (—), and circuit representation of DNN : .

models (x). The solutions from the two representations of DNN are in complé@gueh more accurate than both the conventional behavioral mod-

agreement with each other. (b) DBS system output: comparison between sysading approach, and the static neural network approach.
solutions using DNN models (—), and ADS simulation of original system (0).

Excellent agreement is achieved even though these nonlinear solutions were
never used in training. IV. CONCLUSIONS

f=12.025 GHz
Prp=-36 dBm

Output Voltage-Vour (V)
o
o
=)

This paper has presented a neural network method for mod-
using original circuits, using circuit representation of DNN<sling nonlinear microwave circuits and its applications for high-
and using HB representation of DNNs are 6.52, 3.94, and 0.81éwel simulation. The model is derived in the most effective
respectively, showing efficiency of the DNN-based system sirfermat, i.e., continuous time-domain dynamic format and can
ulation. be developed from input—output data without having to rely

A further comparison is made between the proposed dyn internal details of the circuits. A novel training scheme al-
namic neural network, the conventional static neural netwoldws the training of DNN to learn from either time or frequency
approach, and the conventional behavioral modeling approatdmain input—output information. After being trained, the pro-
(nonneural network approach). We trained three static neupaised model can be conveniently incorporated into existing sim-
networks using the stati€—Q (current-charge) model of [9] ulators. The proposed DNN retains or enhances the advantages
to learn the two amplifiers and the mixer, and incorporatesf learning, speed, and accuracy as in existing neural network
these models into ADS using NeuroADS [33]. The overatechniques; and provides additional advantages of being theoret-
DBS system simulation using the static neural models waslly elegant and practically suitable for diverse needs of non-
performed in ADS. As expected, such static models, whilmear microwave simulation, e.g., standardized implementation
suitable for intrinsic FET modeling, are not accurate enougg simulators, suitability for both time- and frequency-domain
for amplifier and mixers even though the model incorporatesplications, and multitone simulations. The technique allows
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TABLE Il
DBS SrsTEM COMPONENT MODELS. COMPARISONBETWEEN CONVENTIONAL BEHAVIORAL MODEL, STATIC NEURAL MODEL, AND DNNS
Techniques Conventional Static I-Q Proposed
Behavioral Model Neural Model DNN Model
Components
Mixer 3.4% 3.2% 0.02%
Gain stage Amplifier 1.2% 1.9% 0.09%
Output stage Amplifier 7.7% 2.9% 0.16%
TABLE IV

DBS-ReCEIVER SUBSYSTEM: COMPARISON BETWEEN SYSTEM SIMULATION USING CONVENTIONAL BEHAVIORAL MODEL, STATIC NEURAL MODEL, DNNS,
AND DETAILED ORIGINAL CIRCUIT

DBS system DBS system DBS system DBS system DBS system
Techniques simulation simulation simulation simulation simulation
using using using using using
Conventional Static I-Q HB Circuit Detailed
Comparisons Behavioral Neural Representation Representation Original
Model Model of DNNs of DNNs Circuit
grest Bror for 10.3% 6.1% 0.21% 0.21 % 0.0%
pectrum Data (reference for
comparison)
CPU time
for 1000 Monte- 0.18 hours 0.26 hours 0.81 hours 3.94 hours 6.52 hours
Carlo Analysis

further realizing the flexibility of neural-based approaches in[11]
nonlinear microwave modeling, simulation, and optimization.
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